

Tobias Frauenschläger,
OTH Regensburg

Using Secure Elements to
Improve Crypto-Agility in
Operational Technology

Agenda

- 1. State of the Art**
- 2. Our Work**
- 3. Outlook and Future Work**

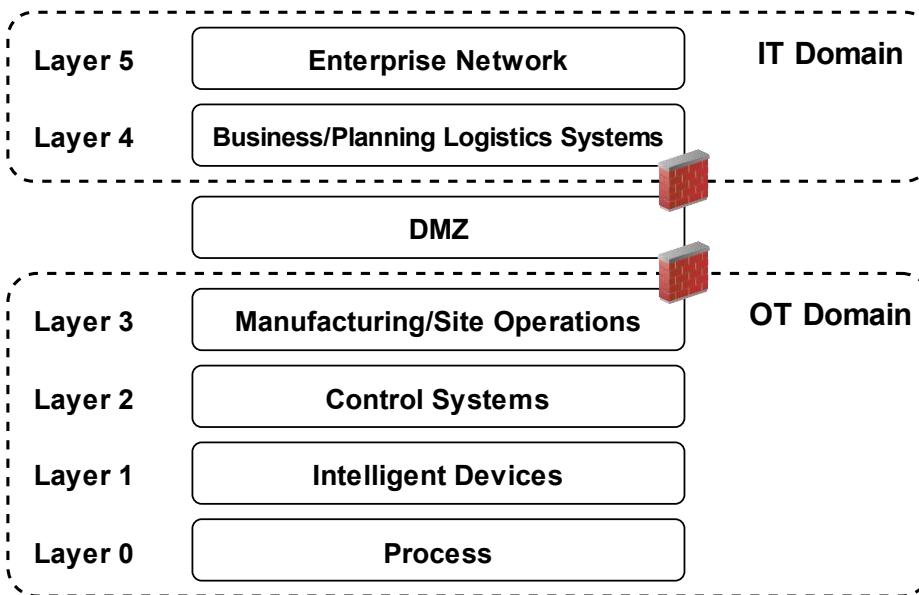
1

State of the Art

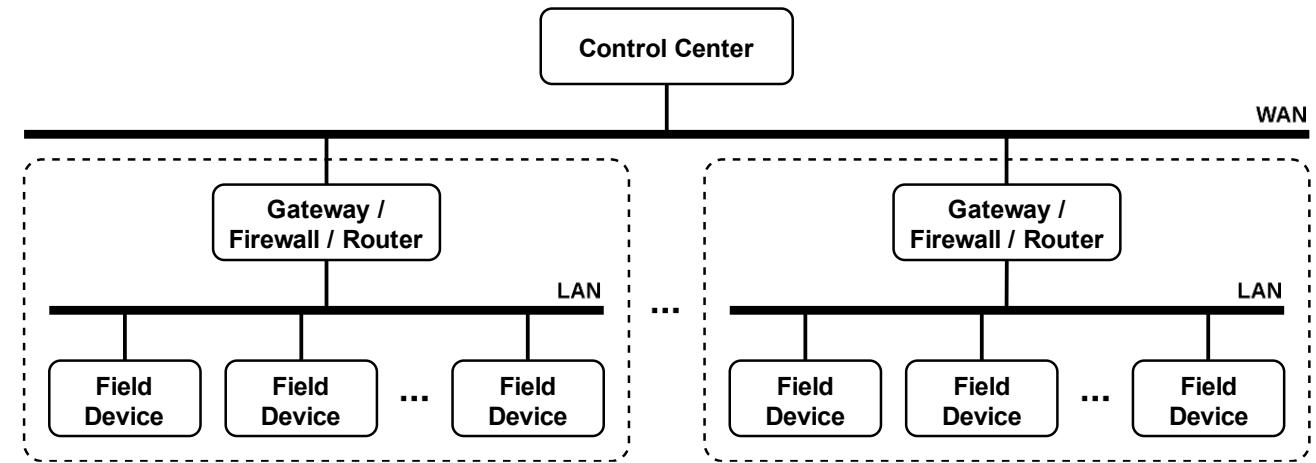
Let's analyze the title in reverse

Operational Technology

Control Center


BITSI

Field Devices



Pierre75000 - Own work, CC BY-SA 4.0

OT communication systems

Purdue Enterprise Reference Architecture

Secure communication within OT SCADA systems

- Various **regulations** prescribe thorough security measures with ongoing updates.
- OT communication systems generally support current security measures but feature only **limited update capabilities**.
- **Long mission times** and compatibility **to legacy systems** slow down adoption of new security measures.
- **Security lifetime shorter** than OT mission times.
- Threat of quantum computer leads to **Post-Quantum Cryptography** migration
- Long-term **key-management** oftentimes a hard problem

→ **Update mechanisms** are required

Crypto-Agility

Crypto-Agility describes the capability of updating and replacing security measures during the lifetime of a component:

- Update the **implementation** of existing security measures
- Update the list of **supported cryptographic algorithms** and their security parameters
- Incorporate and adapt to **new functionality** transparently
- Incorporate regional security **regulations** and comply with regional peculiarities
- Create **transition mechanisms** to enable safe and secure migrations to new security measures

Secure Elements

Soldered Chips

- Secure Elements, TPMs, HSMs, ...
- Intended for Embedded, IoT, OT, ...
- ✓ High system security within a device
- ✗ Static, no crypto-agility

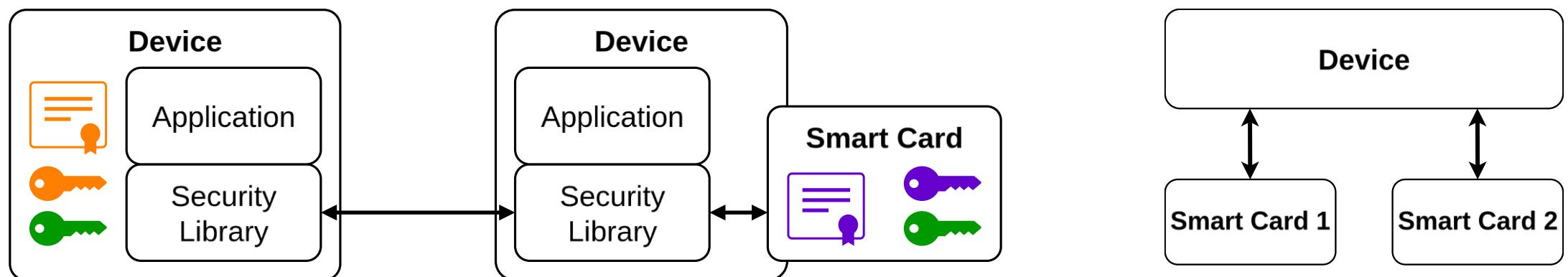
Exchangeable Smart Cards

- Chip Cards, SIM-Cards, SD-Cards, ...
- Intended for personal use
- ✓ High flexibility, high potential for crypto-agility
- ✗ Larger security attack surface

Tongchai Cherdchew / EyeEm/Getty Images

2

Our Work


Approach

Problem: Management and protection of long-term artifacts (private keys, certificates, PSKs), support for new cryptographic implementation (certified)

Solution: Use exchangeable smart cards in OT devices for artifact storage and to execute cryptographic operations

The deployment of a new smart card:

- Simplifies the rollout of **new artifacts**
- Enables support for **new algorithms/implementations**

Implementation

Use Case: Transport Layer Security (**TLS**) handshake (implementation with WolfSSL)

- Ephemeral key exchange
- Authentication via handshake signature with long-term private key of entity certificate
- Signature verification of peer certificate chain (with local root store)
- Key derivation with long-term pre-shared key (PSK)

Key Exchange

ECDHE,

ML-KEM (PQC)

Signatures

RSA, ECDSA,

ML-DSA (PQC)

PSK Derivation

HKDF

Implementation

Requirement: PKCS#11 Version 3.0 for HKDF support
Version 3.2 for PQC support (ML-KEM, ML-DSA, SLH-DSA)

Key Exchange

ECDHE,

ML-KEM (PQC)

Signatures

RSA, ECDSA,

ML-DSA (PQC)

PSK Derivation

HKDF

Functions:

`C_EncapsulateKey()`

`C_DecapsulateKey()`

Mechanism: `CKM_ML_KEM`

Key type: `CKK_ML_KEM`

Functions:

`C_Sign()`

`C_Verify()`

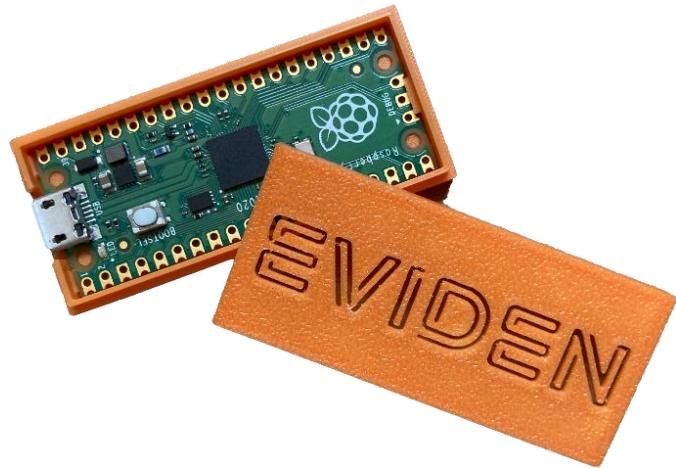
Mechanism: `CKM_ML_DSA`

Key type: `CKK_ML_DSA`

Functions:

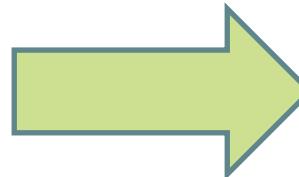
`C_DeriveKey()`

Mechanism:

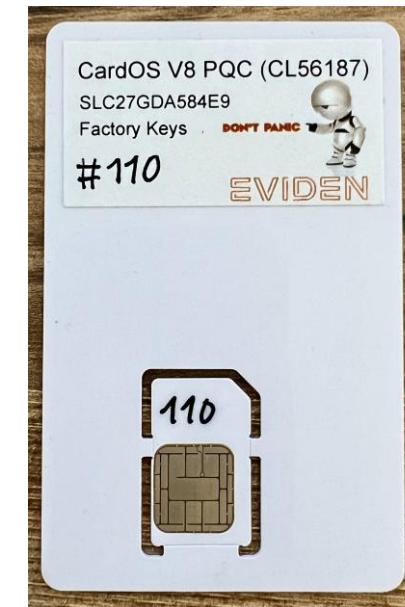

`CKM_HKDF_Derive`

Key type: `CKK_HKDF`

Implementation


Joint research project with Eviden: KRITIS³M (01/2023 – 12/2025)

PQCLM: Post-Quantum
Crypto Learning Machine



Interfaces:

- USB (CCID)
- I²C

„Real“ PQC Smart Card

Interface: ISO7816

Evaluation

Measuring **TLS Handshake duration** (time-to-first-byte) using two Raspberry Pi 4 (one uses smart card via CCID USB reader)

Handshake signature only

Algorithm		Software Only [ms]	V8 [ms]	V5.3 DI [ms]
ECDSA	256	3.77	125.11	209.89
	384	6.89	167.73	301.79
	521	13.62	246.79	478.99
ML-DSA	44	4.03	431.22	-
	65	5.34	648.56	-
	87	7.30	765.68	-

Evaluation

Measuring **TLS Handshake duration** (time-to-first-byte) using two Raspberry Pi 4 (one uses smart card via CCID reader)

Complete Handshake Offloading

Algorithm	Software Only [ms]	V8 [ms]
ECDSA 256	19.80	2959.91
ML-DSA 44	47.22	4127.58

Operations:

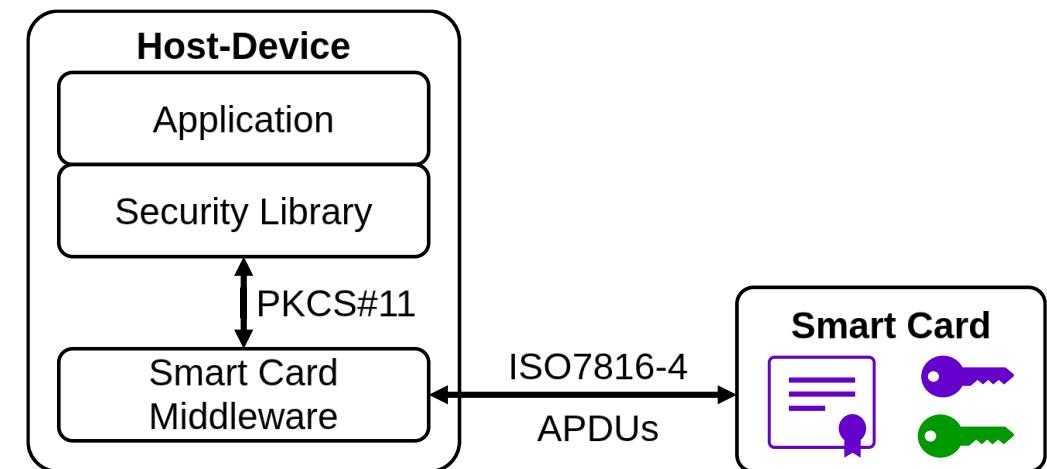
- Ephemeral key exchange
- Create the handshake signature
- Verify peer certificate chain

Pre-Shared Key Offloading

Algorithm	V8 [ms]
PSK only	94.16
PSK + ML-DSA 65	711.28

ML-DSA 65: 648.68 ms

4


Conclusion and Future Work

Achieved Crypto-Agility

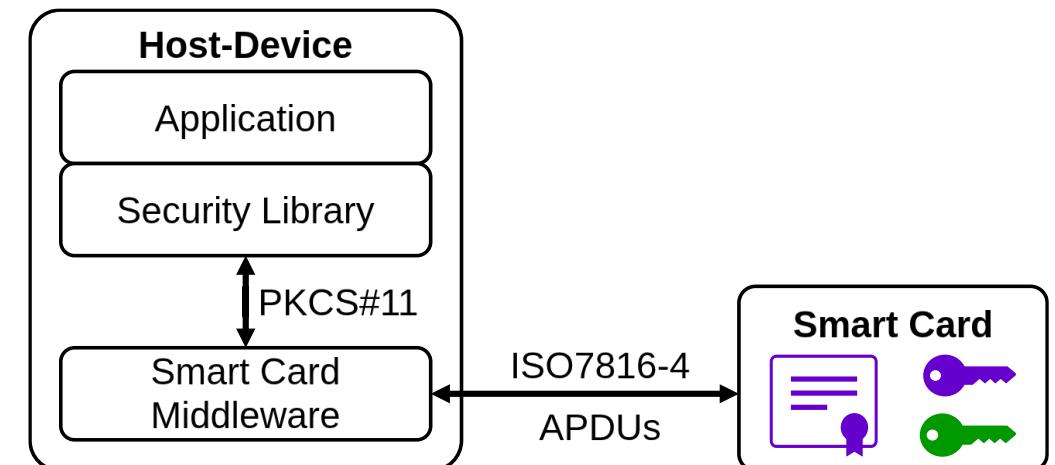
- Physical exchangeability of smart cards enables **partial hardware upgrade**
- PKCS#11 between Security Library and middleware achieves *solid* crypto-agility:
 - No algorithm implementations in Security Library necessary
 - No change for new smartcard with the same set of algorithms
 - **But:** extended API for new algorithms in the future (mechanisms, key types, functions, ...)

Future Improvement: *Generic Trust Anchor API* instead of / in addition to PKCS#11

→ More generic and abstract interface for the Security Library **independent of the algorithm**

OT specific Security Considerations

Problem: exchangeable smart card in **unprotected** environment


Threats:

- Communication Tampering
- Smart Card Theft
- Malicious Smart Card Insertion

Solution: *Secure Pairing* between Host and Smart Card

- Exchange of symmetric key during pairing
- Mutual Authentication during startup
- Secure Channel Establishment

→ Future Work

Contact

Tobias Frauenschläger, M.Sc.

Research Associate
Laboratory for Safe and Secure Systems, LaS³
University of Applied Sciences Regensburg
OTH Regensburg
Seybothstraße 2
DE, 93053 Regensburg

E-Mail: tobias.frauenschlaeger@oth-regensburg.de
Phone: [+49 941 943 9520](tel:+499419439520)

